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Static Cavity Expansion Model for Partially Confined Targets 

Yehuda Partom 

Abstract 

The cavity expansion model (CEM), originally proposed as an indentation theory, has been 
used extensively to estimate the resistance of targets to long rod penetration. In the classical 
model the target is infinite and the cavity is opened up from zero radius. In previous work we 
applied the classical approach to laterally finite targets and we ran into difficulty. The resis- 
tance came out as decreasing with cavity radius. To circumvent the difficulty we introduced 
an averaging scheme with a free parameter to be determined from computer simulations. 

In this work we use a different approach, we open up the cavity from a finite radius. We first 
propose the concept that the target penetration resistance is the limit of stability of the cavity. 
We then apply this concept to estimate the resistance of partially confined targets. We do this 
for both cylindrical and spherical cavities. 

Comparing the model solutions to computer simulation results reported in [2] we find good 
agreement for the spherical CEM, but not for the cylindrical CEM. 

1.0       Introduction 

In [1] we applied the static cavity expansion model (CEM) in cylindrical symmetry to estimate 
the efficiency of lateral self-confinement in metal and ceramic targets. In [2] we calibrated and 
validated the results obtained in [1] using computer simulations. 

Our approach in [1] and [2] was along the lines of the original CEM [3] namely, evaluating the 
internal pressure P(a) needed to open a cavity from zero radius. For a finite outside radius, b, 
we found that P(a) was not constant but decreased with the cavity radius "a." We therefore 
averaged P(a) over a certain range of "a" and defined this average to be the target resistance. 
We calibrated the averaging range from the results of computer simulations. 

In what follows we use a different approach. We first show that the value of P(a) obtained from 
the classical CEM (b -> «>) is actually the limit of stability of a finite radius cavity expanded 
by internal pressure. We then use this insight and evaluate the limit of stability for finite b. We 
regard the limit of stability P{ to be the target penetration resistance. 



We find that P„ depends on b^ (where ag, b0 are the initial inside and outside radii). Identi- 
fying ao with the projectile radius we obtain good agreement with computer simulations for a 
spherical cavity but only qualitative agreement for a cylindrical cavity. 

In Section 2 we explain the concept of the limit of stability. Section 3 provides the analysis for 
a cylindrical cavity, and Section 4 provides the analysis for a spherical cavity. Chapter 5 
shows the model solutions for penetration resistance as a function of the degree of confinement 
and compares this to computer simulation results. 

2.0      Limit of Stability 

To explain the limit of stability concept we evaluate the elasto-plastic cavity expansion from a 
finite initial cavity QQ. 

2.1. Cylindrical Cavity 

The elastic field is: 

ßY  c2 

U = 2G   7' 

°r = -ßY^, 
r 

2 

<?e = ßY?r r 
2 

ar-Ge = -2ßY^, 
r 

(1) 

where: 

u = radial displacement 
a., aQ = radial and tangential stress components 

ß= 73/3 

Y = yield stress and flow stress 

G = shear modulus 

c = elastic-plastic boundary radius 

r = radial coordinate 



and where at r = c we have: 

aroQ = -2ßY, 

which follows from the von-Mises yield surface and from [3]: 

az = -(or + oe), 

where a = axial stress component. At r = c we have: 

(2) 

(3) 

i  ^       ßY 
u(c) = H_c 

crr(c) = -ßY. 

From mass conservation (ignoring density changes) we have: 

2      2 2    „ 2 c^-az=[c-u(c)]z-aoz, 

c      G 

a 2~ßY 

f      a 2>k 

V     a  ; 

(4) 

(5) 

The plastic field is: 

or-2PY(-I + ln|), 

and the cavity wall pressure is: 

(6) 

P(a) = ßYU+ln 
ßY 1-^ 

V     ay. 

We see that as aQ goes to zero, P(a) increases to a limit value: 

(7) 

Pc=    P(a)    =ßY/l+öi-G-' 
ßY 

a0^0 
(8) 

which is the classical result for cylindrical cavity expansion. 



The P(a) curve from (7) is shown in Figure 1 and discussed below together with the spherical 
cavity results. 

2.2.      Spherical Cavity 

The elastic field is: 

u = 
Y_ c^ 

6G   r 

2V   c 
ar = --Y- -, 

J       r 
(9) 

1,,   c 
°9 = S = 5Y--J. 

r 

ar - afl = -Y • -, 

where (r, 0, 9) are the spherical coordinates. 

At r = c we have: 

u(c) = ^c, 

or(c) = -|Y, (10) 

(or-ae)(c) = -Y. 

From mass conservation (and no density change) we have: 

,3    „3 3    „ 3 c  - aJ = [c - u(c)]J - ag 

(11) 

• £_=2G 
"   3_ Y a      1 

/ a, 3\ 

V     ay 



The plastic field is: 

ar = 2Y|-i + ln|). 

and the cavity wall pressure is: 

(12) 

P(a) = | Yj 1 + In 2G 
Y 

f      a3^ 
.-=2 

V     a ; 

from which we get the limit value: 

(13) 

Pc =       P(a) 
(a0^0) 

H>+>°¥ 
The P(a) curve from (13) is also shown in Figure 1. 

2.3.     Limit of Stability and Penetration Resistance 

The cavity expansion results obtained for G/Y = 100 are shown in Figure 1. 
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Figure 1. Cavity expansion (a/a0), in an infinite domain, as a function of scaled internal 
pressure (P(a)/Y), for cylindrical and spherical symmetry. The horizontal asymptotes are 
the limits of stability of the cavity. Pc is given by (7), Ps by (13), Pfc by (8) and P»s by (14). 
G/Y = 100. 



We see that as long as P(a/a0) < Pf, the cavity is statically stable with a radius "a." At P = P,, 
the cavity can grow indefinitely, quasistatically (with zero velocity). Also, because a/aQ is in- 
finite when a finite cavity is opened from zero radius, P{ is identical to the penetration resistance 
obtained from the classical CEM [3]. This provides a different way of looking at penetration 
resistance obtained from CEMs: penetration resistance is the internal pressure on the cavity 
wall that would make the cavity expand indefinitely, at zero velocity. For P > Pc, the cavity 
wall is accelerated by the internal pressure. 

In [1] and [2] we used the CEM to estimate the penetration resistance of partially confined tar- 
gets. Using the classical approach (opening a finite cavity from zero radius) we found that the 
internal pressure needed to open the cavity to a radius "a" was a decreasing function of "a." To 
extract a penetration resistance value from P(a) we averaged it over the range 0 < a < ar, where 
ar was calibrated from computer simulation results. 

By applying the limit of stability approach to cavity expansion in a finite domain we can avoid 
the arbitrariness of the averaging approach. 

3.0      Cylindrical Cavity Expansion, Finite a0 and b0 

The elastic field is: 

ßY 
2G 

(2 n 2^ c G      c_ 
"2 + UG'Z2 Vr bj 

ar = -ßY 
f  2        2^ 

C C_ 

~2 ~~3- vr      by 

ae = ßY 
( 2    2^ 

C        C 

~2+ri r     b' 
(15) 

a= ßY X      c 
X + G   h2- 

ar-ae = -2ßY^-, 

P = -ßY 
K      c 

X + G  b2' 



where: 

X = Lame's modulus, 

K = Bulk modulus. 

The elastic moduli ratios in (15) are: 

X 
X + G 

= 2v, 

G 
X + G 

= l-2v. (16) 

K 2/1 = ö(1+V), 
X + G     3 

where v = Poisson's ratio. 

and at r = c we have: 

<  ^       ßY 
u(c) = H_c l + (l-2v)^ 

b 

f A 
ar(c) = -ßY 1- 

c 
_7~2 l b ) 

The plastic field solution is: 

(17) 

°r = -ßY 
V 

2 2^ 
1     c      ,   c 
1 - — + ln— 

, 2 2 
) r ; 

(18) 

so that: 

P(a) = ßY 
(     2       2^ 

1      C        ,   C 1 - — + ln— 
V     b a ) 

(19) 

From mass conservation we have (as in Section 2.1): 



c2 - a2 = [c - u(c)]2 - ag2, (20) 

2"2 
1- 

2 u(c)' 

2       ßY 

1 2/   2 

1 -a0/a 

l + (l-2v)-^ 
b 

(21) 

Also, at r = b we have: 

b = b0 + u(b), 

(22) 

u(b) = 
2    G ^Cl (1-v), 

so that: 

c 
a 

ty)   ^o   c 
a0   a   b 

l-§X.(l-v) 
(23) 

Equations (21) and (23) are nonlinear simultaneous equations in c/a and c/b. Substituting c/a 
from (23) into (21) we obtain a quadratic equation in c2/b2 which can be solved analytically for 
given bo/ao and a/a^ Finally, substituting into (19) gives P(a) for given b^ and a/aQ. 

When the elastic-plastic interface reaches the outside boundary we have: 

c = b, 

P(a) = ßYlnH- (24) 

2,  2 
G    l-a0/a 

2      ßY    2(1-v) 

But from (22): 



b 
b 

1 

o      i    ßZ 
G 

(1-v) 
(25) 

Eliminating b from the last of (24) and (25) we get: 

-     = 1 + 
b^2       2(1-v).^ 

l-(l-v) 
ßY -i2 

for c = b. (26) 

For a > ac=b the second of (24) still holds, and bz/a2 is obtained from mass conservation 

b2-a2 = b0
2-ao2, 

^=1+^ 
2 2 a a 

Vu2      A 
(27) 

va0    ; 

Results for P(a)/Y as a function of a/aQ, for G/Y = 100, v = 0.3, and for different values of bo/ao, 
are shown in Figure 2. We see that the curves rise to a peak and then drop. The value of P(a) 
at the peak is the limit of stability pressure P{. We see that P{ increases with b^ and that the 
corresponding a/a0 value increases. In Chapter 5 we further discuss these results together with 
the spherical cavity results obtained in Chapter 4. 
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Figure 2. Cylindrical cavity expansion (a/a,)), in a finite domain, as a function of the scaled 
internal pressure (P(a)/Y), for G/Y = 100 and v = 0.3. The different curves are for different 
values of b,)/a0. 



4.0      Spherical Cavity Expansion (finite a0 and b0) 

The elastic field is: 

Y 
U = 6Gr 

(  3 3A 
£_ + ?   1 ~2v  £_ 

Vr3       '1+v'b3
y 

K ( "*> 3A c c ar = -~Y r 3 3 ,3 U b ) 

Ofl = ^Y 9      3 

d       3        3^ 
1    C_      C 

V     r      by 
(28) 

°r-°e = -Y V 

3      b3' 

and at r = c we have: 

u(c) = ^c 1+2- 
V 

l-2v   t? 
1+V   'b3y 

CTr(c) = -|Y 
f     3^ 

V      b3y 

(29) 

The plastic field solution is: 

o, = --Y 
(      3       3^ 

1      C        ,    C l-- + ln- 
v     b r ; 

(30) 

so that: 

P(a) = p 
( 3 3^ 

1      C        ,    C l-- + ln- 
V a; 

(3D 

10 



From mass conservation we have: 

,3    „3 3    o 3 cJ - aJ = [c - u(c)]J - aoJ, 

3      .( 
— ~ 1 
K3 

=
 3 

a, 3\ 

V     a ; 

(32) 

u(c)' 

c^ _ 2G        (l-a0
3/a3) 

a3_   Y'l+2.i^-4 
1+V     b3 

(33) 

Also, at r = b we have: 

b = b0 + u(b), 

u(b) = 2G--2TT^' 

(34) 

so that: 

bo ao  c 
c _ ao a   b 
a 

1 
Y 1-v 3 

C 

2G 1+v b3 

(35) 

Equations (33) and (35) are nonlinear simultaneous equations in c/a and c/b. Substituting c/a 
from (35) into (33) we get a cubic equation in c3/b3 which can be solved numerically with a 
standard bisection routine. Finally, substituting back into (31) gives P(a) for given b(/a0 and 
a/a0. 

When the elastic-plastic interface reaches the outside boundary we have: 

c = b, 

-i , 3.3 
b_; _    1 - a0/a 

a3 " I   X   !-v 
2'G'1+v 

?       h3 

P(a) = ^Yln^. 
J       a 

(36) 

11 



But from (34): 

1 
2G'1+v 

(37) 

Eliminating b from the second of (36) and (37) we get: 

3   Y   1-v 

for c = b. -     = 1+  - 
V3 

2   G   1+v 

1-X   1~v 

2G-1+v 

(38) 

For a > ac=b the third of (36) still holds, and b3/a3 is obtained from mass conservation: 

b3 - a3 = b0
3 - ao3, 

?--(?J 52-i 
Va0      . 

(39) 

Results for P(a)/Y as a function ofa/üQ, for G/Y = 100, v = 0.3, and for different values of tya^ 
are shown in Figure 3. The curves are similar in nature to those shown in Figure 2 for the cy- 
lindrical cavity. 
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Figure 3. Spherical cavity expansion (a/s^), in a finite domain, as a function of the scaled 
internal pressure (P(a)/Y), for G/Y = 100, v = 0.3. The different curves are for different 
values of t>o/a0. 
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5.0      Penetration Resistance Results and Conclusions 

As explained in the introduction, the peaks of the curves in Figures 2 and 3 are the limits of 
stability of the cavity, in terms of the scaled internal pressure (Pj/Y). In Figure 4 we show Pc/Y 
as a function of bo/ao for cylindrical and spherical cavities. 

ST 

2 - 

i        |       |        , 1 , , , r 

limit of stability 

spherical cavity 

cylindrical cavity 

-i i_ -i i_ 

1 0       5      10     15     20     25     30     35     40     45     50 
1 bo/a0 

Figure 4. Limit of stability (maxima of P(a)/Y versus a/aQ curves) as a function of b,)/a0 

for cylindrical and spherical cavities. G/Y = 100, v = 0.3. Asymptotes are the same as 
in Figure 1. 

We see that the spherical cavity curve approaches its asymptote faster that the cylindrical cavity 
curve. In Figure 5 we show that the same results only normalized to their asymptotic values 
(Pt for b0 -» oo). We also identify Pc as the penetration resistance R and denote the asymptotic 
values by Rjnf. 

normalized penetration resistance 

0.8 
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0.2 

o    simulation 

10     15     20     25     30 
bo/ao 

35     40     45     50 

Figure 5. Same as in Figure 4 but normalized to values at infinite b0; also, P{ is identified 
with penetration resistance R. Points are from simulations with steel targets in [2] as- 
suming that D/Dp = bo/a0. 
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We also put on Figure 5 the results of numerical simulation with steel targets from [2]. In doing 
that we assumed that Dt/Dp in the simulation (where Dt = target diameter and Dp = projectile 
diameter) is identical with bfa in the CEM. We see that the simulation points are quite close 
to the spherical cavity curve. (For steel, G/Y = 100 and v = 0.3 is a good approximation, and 
the sensitivity to those parameters is low.) 

We conclude that: 

• The limit of stability approach is an appropriate tool for estimating penetration resis- 
tance of partially confined targets. 

• The spherical CEM is better suited to model penetration resistance than the cylindrical 
CEM. 
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